Semiparametric Best Arm Identification with Contextual Information

Masahiro Kato, The University of Tokyo and CyberAgent, Inc.

Masaaki Imaizumi, The University of Tokyo

1. Abstract

- Best arm identification (BAI) with a fixed budget and contexts.
- BAI with a fixed budget: recommend the best arm from ٠ multiple arms in the final round of an adaptive experiment.
- Before drawing an arm, we can observe **contexts** (covariates). ٠
- Goal: recommend the best arm with less failure probability.
- **Contributions:**
- Asymptotically optimal algorithm under a small-gap regime. 1. Existence of an asymptotically optimal algorithm was unknown.
 - \rightarrow Propose an optimal algorithm under a small-gap regime.
- BAI with contextual information. 2.

Takuya Ishihara, Tohoku University

Toru Kitagawa, Brown University

4. Lower Bound and Sample Allocation Ratio

- Characterize the bound by the conditional variance.
- $(\sigma^a(X_t))^2$: conditional variance of Y_t^a given X_t . Theorem 1 (Lower bound)
- For all $a \in [K]$, there exist $\Delta_0, C > 0$ such that $\mu^{a^*} \mu^a < 0$ Δ_0 and $\mu^{a_0^*}(x) - \mu^a(x) = C(\mu^{a^*} - \mu^a).$
- When K = 2, the lower bound of $\mathbb{P}[\hat{a}_T^* \neq a^*]$ is

$$\limsup_{T \to \infty} -\frac{1}{T} \log \mathbb{P}[\hat{a}_T^* \neq a^*] \le \frac{\Delta_0^2}{2\int \left(\sigma^1(x) + \sigma^2(x)\right)^2 \zeta(x) dx} + o(\Delta_0^2)$$

- When K = 2, the lower bound of $\mathbb{P}[\hat{a}_T^* \neq a^*]$ is $\lim \sup_{T \to \infty} -\frac{1}{T} \log \mathbb{P}[\hat{a}_T^* \neq a^*] \le \frac{\Delta_0^2}{2\sum_{a=1}^K \int (\sigma^a(x))^2 \zeta(x) dx} + o(\Delta_0^2)$
- This lower bound suggests drawing an arm a with the

Few existing methods employ contextual information in BAI.

Analytical solution of sample allocation ratio. 3.

Existing studies require high computational costs to obtain

a sample allocation ratio in an experiment.

 \rightarrow We show an analytical solution of a sample allocation ratio.

2. Best Arm Identification with Contexts

Adaptive experiment with T rounds: $[T] = \{1, 2, ..., T\}$.

K treatment arms: $[K] = \{1, 2, ..., K\}$.

Treatment arms: alternatives of medicine, policy, and advertisements. By drawing a treatment arm, we observe a reward of the drawn arm.

Each arm a has a potential outcome $Y_t^a \in \mathbb{R}$.

The distributions of $Y_{a,t}$ do not change.

Denote the mean outcome of an arm a by $\mu^a = \mathbb{E}[Y_t^a]$.

Contexts: d-dimensional random variable $X_t \in \mathbb{R}^d$.

Side information such as a feature of arms.

- Best treatment arm: an arm with the highest reward. Denote the best treatment arm by $a^* = \arg \max_{a \in [K]} \mu^a$
- **Bandit process**: In round $t \in [T]$,
- Observe contexts X_t .
- Pull an arm $A_t \in [K]$. •

following probability $w^*(a|X_t)$ (sample allocation ratio):

When
$$K = 2$$
, $w^*(a|X_t) = \frac{\sigma^a(X_t)}{\sigma^1(X_t) + \sigma^2(X_t)}$,

- When $K \ge 3$, $w^*(a|X_t) = \frac{(\sigma^a(X_t))}{\sum_{b \in [K]} (\sigma^b(X_t))^2}$. $\forall a \in [K]$.
- Lower bound under a small-gap regime.

•
$$\Delta_0 \to 0$$
 means $\mu^{a^*} - \mu^a \to 0$.

- Draw the best arm with higher probability based on $(\sigma^a(X_t))^2$.
- This bound gives the analytical solution of the sample allocation ratio.

5. Optimal Strategy and Upper Bound

- Algorithm (strategy). <u>Contextual RS-AIPW strategy</u>.
- **RS**: random sampling of each treatment arm
- **AIPW**: recommendation using an <u>augmented inverse</u> probability weighting (AIPW) estimator.

An asymptotically efficient estimator of an expected reward. This estimator is often used in causal inference literature.

- > Procedure of Contextual RS-AIPW strategy:
- In each round $t \in [T]$, estimate $\sigma^a(x)$ and a^* .
- Using estimators of $\sigma^a(x)$ and a^* , estimate w^* .
- Draw a treatment arm with the estimated probability \widehat{w}_t .
- 4. In round T, estimate μ^a using the AIPW estimator:

- Observe a reward $Y_t^{A_t}$
- t = 1After the final round T, an algorithm recommends • an estimated best treatment arm $\hat{a}_T^* \in [K]$.
- **Goal**: Minimizing the probability of misidentification: $\mathbb{P}[\hat{a}_T^* \neq a^*]$.

3. Evaluation

- $\mathbb{P}[\hat{a}_T^* \neq a^*]$ converges to 0 with an exponential speed.
 - $\rightarrow \mathbb{P}[\hat{a}_T^* \neq a^*] = \exp(-T(\star))$ for a constant (*).
- Consider evaluating the term (\star) by $\lim_{T\to\infty} \sup_{T\to\infty} -\frac{1}{T}\log \mathbb{P}[\hat{a}_T^* \neq a^*].$

Observe $X_t Y_t^1$

Experimenter Observe $Y_t^{A_t}$

Draw A_t Y_t^2

 Y_t^K

Arm 1

Arm 2

Arm K

- A performance lower (upper) bound of $\mathbb{P}[\hat{a}_T^* \neq a^*]$ is an upper (lower) bound of $\lim_{T} \sup_{T} -\frac{1}{T} \log \mathbb{P}[\hat{a}_T^* \neq a^*]$.
- **Large deviation analysis**: tight evaluation of $\mathbb{P}[\hat{a}_T^* \neq a^*]$.
- Analysis under a "small-gap regime," where $\mu^{a^*} \mu^a \rightarrow 0$.

Situation where it is difficult to identify the best arm. Optimality under a large gap (constant $\mu^{a^*} - \mu^a$) is an open issue.

$$\hat{\mu}_{T}^{\text{AIPW},a} = \frac{1}{T} \sum_{t=1}^{T} \frac{1[A_{t} = a] (Y_{t}^{a} - \hat{\mu}_{t}^{a}(X_{t}))}{\widehat{w}_{t}(a|X_{t})} + \hat{\mu}_{t}^{a}(X_{t})$$

- $-\hat{\mu}_t^a(X_t)$: an estimator of μ^a using samples until round t.
- This estimator consists a martingale difference sequence.

Recommend
$$\hat{a}_T^{AIPW} = \arg \max_{a \in [K]} \hat{\mu}_T^{AIPW,a}$$

Theorem 2 (Upper bound)

If the estimator
$$\widehat{W}_t$$
 is consistent, when $K = 2$,

$$\lim_{T \to \infty} \sup_{T \to \infty} -\frac{1}{T} \log \mathbb{P}[\widehat{a}_T^{\text{AIPW}} \neq a^*] \geq \frac{\Delta_0^2}{2\int (\sigma^1(x) + \sigma^2(x))^2 \zeta(x) dx} - o(\Delta_0^2);$$
when $K \geq 3$,

$$\lim_{T \to \infty} \sup_{T \to \infty} -\frac{1}{T} \log \mathbb{P}[\widehat{a}_T^{\text{AIPW}} \neq a^*] \geq \frac{\Delta_0^2}{2\sum_{a=1}^K \int (\sigma^a(x))^2 \zeta(x) dx} - o(\Delta_0^2)$$

- Under a small-gap regime $(\mu^{a^*} - \mu^a \rightarrow 0)$, the upper

and lower bounds match = asymptotically optimal.

Estimation error of w^* is trivial under a small-gap regime.

References

M Kato, M Imaizumi, T Ishihara, T Kitagawa (2022), "Semiparametric Best Arm Identification with Contextual Information," Preprint on arXiv.