- Kato, M., Okumura, K., Ishihara, T., and Kitagawa, T.,
Adaptive Experimental Design for Policy Learning.
- Cabel, D., Sugasawa, S., Kato, M., Takanashi, K. and McAlinn, K.,
Bayesian spatial predictive synthesis.
- Ariu, K., Kato, M., Komiyama, J., and McAlinn, K.,(Alphabetical order)
Policy Choice and Best Arm Identification: Comments on "Adaptive Treatment Assignment in Experiments for
Policy Choice"
First draft: 16 Sep 2021. [arXiv]
Revise and Resubmit for Econometrica
- Kato, M., and Ariu, K.,
The Role of Contextual Information in Best Arm Identification
First draft: 26 Jun 2021. [arXiv]
Reject and Resubmit for Journal of Machine Learning Research
Submitted
- Kato, M., Nakagawa, K., Abe, K., and Morimura, T.,
Direct Expected Quadratic Utility Maximization for Mean-Variance Controlled Reinforcement Learning
First draft: 29 Sept 2020; Update 3 Apr 2021. [arXiv]
- Kato, M., Ishihara, T., Honda, J., and Narita,
Y.,
Efficient Adaptive Experimental Design for Average Treatment Effect Estimation
- Kato, M.*, Oga, A., Komatsubara, W., and Inokuchi, R.,
Active Adaptive Experimental Design for Treatment Effect Estimation with Covariate Choices
In ICML 2024 [arXiv]
- Kato, M.*, Imaizumi, M., and Minami, K.
Unified Perspective on Probability Divergence via Maximum Likelihood Density Ratio Estimation: Bridging KL-Divergence and Integral Probability Metrics
In AISTATS 2023 [arXiv]
- Yasui, S.*, and Kato, M.*, (* Equal
contribution)
Learning Classifiers under Delayed Feedback with a Time Window Assumption
In KDD 2022 [arXiv]
- Kato, M., Imaizumi, M., and Kakehi H., McAlinn, K., Yasui, S.
Learning Causal Relationships from Conditional Moment Conditions by Importance Weighting
In ICLR 2022 (Spotlight) [openreview][arXiv][slide][poster]
- Kato, M., Yasui, S., and McAlinn, K.,
The Adaptive Doubly Robust Estimator for Policy Evaluation in
Adaptive Experiments and a Paradox Concerning Logging Policy.
In NeurIPS 2021. [arXiv]
- Kato, M., and Teshima, T.,
Non-negative Bregman divergence
minimization for deep direct density ratio estimation.
In ICML 2021.
- Togashi, R., Kato, M., Otani, M., Sakai, T., and Satoh.
S.,
Scalable Personalised Item Ranking through Parametric Density Estimation.
In SIGIR 2021.
- Togashi, R., Kato, M., Otani, M., and Satoh.
S.,
Density-Ratio
Based Personalised Ranking from Implicit Feedback.
In The Web Conference (WWW) 2021.
- Kato, M.*, Uehara, M.*, and Yasui, S., (* Equal
contribution)
Off-Policy Evaluation and Learning for External Validity under a Covariate
Shift.
In NeurIPS 2020 (Spotlight).
- Kato, M., Teshima, T., and Honda, J.,
Learning from positive and unlabeled data with a selection bias.
In ICLR 2019.
[openreview]
- Komiyama, J., Ariu. K., Kato. M., and Qin, C.,
Optimal simple regret in bayesian best arm identification
Mathematics of Operations Research.
- Kato, M., and Ito. S.
Best-of-Both-Worlds Linear Contextual Bandits
Transactions on Machine Learning Research.
- Fukuda, A., Kato, M., McAlinn, K., and Takanashi, K.,
Bayesian Predictive Synthetic Control Methods
In ICML 2023 Workshop on Counterfactuals in Minds and Machines.
[Google Drive]
- Kato. M., Imaizumi, M., Ishihara, T., and Kitagawa, T.,
Fixed-Budget Hypothesis Best Arm Identification: On the Information Loss in Experimental Design
In ICML 2023 Workshop on New Frontiers in Learning, Control, and Dynamical Systems.
[openreview]
- Kato. M., Imaizumi, M., Ishihara, T., and Kitagawa, T.,
Semiparametric Best Arm Identification with Contextual Information
In IBIS.
[arXiv]
[poster]
- Kato, M., Imaizumi, M., McAlinn, K., Yasui, S., and Kakehi H.
Learning Causal Relationships from Conditional Moment Conditions by Importance Weighting
In NeurIPS 2021 Workshop on Machine Learning meets Econometrics. [arXiv]
- Kato, M., Nakagawa, K., Abe, K., and Morimura, T.,
Direct Expected Quadratic Utility Maximization for Mean-Variance Controlled Reinforcement Learning
In NeurIPS 2021 Workshop on Deep Reinforcement Learning. [arXiv]
- Kato, M., Yasui, S., and McAlinn, K.,
The Adaptive Doubly Robust Estimator for Policy Evaluation in
Adaptive Experiments.
In ICML 2021 Workshop on The Neglected Assumptions In Causal Inference. [arXiv]
- Kato, M., Ishihara, T., Honda, J., and Narita,
Y.,
Adaptive
Experimental Design for Efficient Treatment Effect Estimation.
In NeurIPS 2020 Workshop on Causal Discovery & Causality-Inspired Machine Learning.